EVA Specialties (Film application)

August 26, 2018

Hanwha TOTAL Petrochemical
Contents

I HTC Introduction

II EVA Overview

III Hanwha Total's EVA

IV Film application

V Fisheye
I. HTC Introduction
HanwhaTotal Petrochemical

General information

Founded: 1988 (as Samsung General Chemicals)
Head Office: Daesan, Chungcheongnam-do
President & JRD: Kim Hee Cheul
EVP & JRD: Jean-Marc Otero del Val
Revenue: KRW 8.2 trillion (a/o 2016) 500 billion ruble
Employee Count: 1,590 (a/o 2016)

Base chemicals, Polymers and energy products from condensate and naphtha as main feed stocks

Feed Stocks
- Condensate
- Naphtha
- LPG

Main Products
- NCC
- Polymers (PE, PP etc.)
- Base chemicals (SM, PX etc.)
- Aromatics Plants
- Energy (jet fuel, diesel etc.)

Key Products
- Domestic No. 1 in packaging materials and film
- No. 1 in bottlecap production in Korea (76% market share) and China (50% market share)
- Domestic No. 1 in SM production (1.05 million tons)
- Nation’s 1st producer of jet fuel in Petrochemicals
- Gasoline, supplier to 30% of all cost-savings gasoline stations
- Global No. 1 in EVA for solar cell materials (35% market share)
Production Capabilities

Manufacturing performance

(Kilotons, a/o 2017)

- NCC
- Ethylene (1,090)
 - Propylene (932)
 - C4 (410)
 - Pygas (770)
 - HDPE (175)
 - LDPE / EVA (435)
 - LLDPE (125)
 - EO/EG (155)
 - PP (717) / PP Compound (130)
 - Butadiene (120)
 - Benzene (200)
 - SM (1,050)
- Benzene (1,015)
- PX (1,997)
- Jet Fuel/Kerosene (2,000)
 - Hi-sene (250)
- Mogas (120)
 - Diesel (1,030)
Polymer business

- EVA Solar Cell Sheet
- EVA Extrusion Coating
- LDPE Protection Film
- EVA/LD Wire & Cable

EVA/LD

- Film
- Blow
- Bottle Cap
- CPE (Chlorinated Polyethylene)

HDPE

- C4 film
- Wire & Cable
- Bottle Cap (HDPE)
- Roto

LLDPE

- HIPP (Homo & BCPP)
- Random, Terpolymer
- High MI BCPP
- ABS Replacement
- Battery Case

PP

- Flame Retardant
- Long Glass Fiber
- High Flow Comp. for Automotive

PPC

- Hanwha
- Total
II. EVA Overview
EVA (Ethylene vinyl acetate)

- **Ethylene-vinyl acetate random copolymer**
 - Copolymerization with ethylene and vinyl acetate monomer
 - Radical polymerization under high pressure

\[
\begin{align*}
\text{H}_2\text{C} & \equiv \text{CH} \\
\text{O} & \\
\text{C} & \equiv \text{O} \\
\text{CH}_3 & \\
\text{H}_2\text{C} & \equiv \text{CH}_2 \\
\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CHCH}_2\text{CH}_2 & \\
\text{O} & \\
\text{C} & \\
\text{CH}_3 & \\
\text{X} = \text{acetate}
\end{align*}
\]

Vinyl acetate + Ethylene \[\rightarrow\] Ethylene vinyl acetate copolymer

Molar mass : \(86\text{ g/mol}\) Molar mass : \(28\text{ g/mol}\)
Effect of VA content

Increase of VA content gives:

- More short chain branching
- Less crystalline (More amorphous)
- Lower melting temperature
- More elastic as solid
- Higher density
- Increased polarity

Polymer properties

- Better adhesion to polar substrate
- Increased tackiness
- Lower seal initiation temperature
- Greater flexibility
- Higher clarity & gloss
- Increased toughness

Application properties
Effect of Melt Index

- **Effect of Melt Index**

 Decrease of MI gives:

 - **Polymer properties**
 - Higher molecular weight
 - Higher viscosity

 - **Application properties**
 - Lower flowability
 - Higher melt strength
 - Increased impact resistance
 - Increased tensile strength
 - Higher abrasion resistance

 ![Decreasing MI diagram]

 From high MI to low MI.
Reactor types

<table>
<thead>
<tr>
<th>Reactor</th>
<th>Autoclave</th>
<th>Tubular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversion</td>
<td>Up to 22 %</td>
<td>Up to 36 %</td>
</tr>
<tr>
<td>Pressure</td>
<td>1100 ~ 2000 bar</td>
<td>2000 ~ 3500 bar</td>
</tr>
<tr>
<td>Temperature</td>
<td>130 ~ 280 °C</td>
<td>180 ~ 350 °C</td>
</tr>
<tr>
<td>Initiator</td>
<td>peroxide</td>
<td>oxygen, peroxide</td>
</tr>
<tr>
<td>Mixing</td>
<td>Stirred/Back Mixing</td>
<td>Plug flow</td>
</tr>
<tr>
<td>Residence time distribution</td>
<td>Broad</td>
<td>Narrow</td>
</tr>
<tr>
<td>VA content</td>
<td>Possible to produce EVA over 40 %</td>
<td>Max. 10 ~ 30 % (depending on the process)</td>
</tr>
</tbody>
</table>
Characteristics of Tubular EVA

<table>
<thead>
<tr>
<th>MWD</th>
<th>Autoclave</th>
<th>Tubular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broad</td>
<td></td>
<td>Narrow</td>
</tr>
</tbody>
</table>

LCB

- **Tubular**
- **Autoclave**

Film surface roughness (AFM)

- **Tubular**
- **Autoclave**
Differences originated from Process

- Autoclave reactor EVA
 - Broad MWD, high MW tail, F/E (gel) level increase
- Tubular reactor EVA
 - Narrow MWD, high transparent
Peeling Strength

- Higher peeling strength compared to same MI competitor’s grade

Peeling Strength

<table>
<thead>
<tr>
<th>Extension (mm)</th>
<th>(kgf/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>120</td>
<td>120</td>
</tr>
</tbody>
</table>

- Glass/EVA/PET lamination
- Lamination Condition: 150 °C, Vacuum 6 min, Press (100Kpa) 11 min
Lower Shrinkage

- Less melt elasticity and memory effect of HTC EVA leads fast relaxation time
- Low residual stress in a sheet made from casting or calendering process
III. Hanwha Total's EVA
Hanwha Total’s EVA Capacity

<table>
<thead>
<tr>
<th>Plant</th>
<th>Reactor</th>
<th>Licensor</th>
<th>Capacity (KT/Yr)</th>
<th>Start-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.1</td>
<td>Tubular</td>
<td>Mitsubishi</td>
<td>155</td>
<td>1991</td>
</tr>
<tr>
<td>No.2</td>
<td>Tubular</td>
<td>LyondellBasell</td>
<td>240</td>
<td>2014</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td></td>
<td>395</td>
<td></td>
</tr>
</tbody>
</table>
HTC EVA consists of a range of vast array of industrial application such as photovoltaic encapsulant, footwear, food packaging, wire & cable and extrusion coating, agricultural greenhouse film, stretch hood
IV. Film application
HTC’s EVA for Film

Grade List

<table>
<thead>
<tr>
<th>Grade</th>
<th>MI (g/10min)</th>
<th>VA (wt%)</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>E032A</td>
<td>0.5</td>
<td>3</td>
<td>Agricultural greenhouse film</td>
</tr>
<tr>
<td>E090A</td>
<td>0.8</td>
<td>9</td>
<td>Agricultural greenhouse film</td>
</tr>
<tr>
<td>E120A</td>
<td>1</td>
<td>12</td>
<td>Agricultural greenhouse film</td>
</tr>
<tr>
<td>E140A</td>
<td>4.5</td>
<td>14</td>
<td>Packaging film, Multi-layer film</td>
</tr>
<tr>
<td>E150A</td>
<td>1</td>
<td>15</td>
<td>Agricultural greenhouse film</td>
</tr>
<tr>
<td>E180A</td>
<td>0.8</td>
<td>18</td>
<td>Agricultural film, Stretch hood, Packaging film, Multi-layer film</td>
</tr>
</tbody>
</table>
Agricultural film E032A/E090A/E120A/E150A/E180A

- **Application:** Greenhouse film
- **Product characteristics**
 - Excellent light transmittance
 - Low Fish-eye and gel level
 - Excellent physical strength
 - Good dispersion of master batch

- **General film layer structure**
 - HTC EVA + master batch (UV, Anti-fogging agent, lagging material, etc)

<table>
<thead>
<tr>
<th>Layer</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>anti-aging layer (outer)</td>
<td>LDPE + mLLDPE</td>
</tr>
<tr>
<td>insulation layer (center)</td>
<td>EVA (3~18% VA) + LDPE</td>
</tr>
<tr>
<td>anti-droplet layer (inner)</td>
<td>EVA (3~18% VA) + LDPE</td>
</tr>
</tbody>
</table>

Greenhouse film (3 layers)
- **Optical property**
 - Excellent light transmittance
 - Lower haze

Light Transmittance (%)

![Graph showing light transmittance](image)

Haze (%)

<table>
<thead>
<tr>
<th></th>
<th>E180A</th>
<th>EVA-A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haze</td>
<td>10.2</td>
<td>17.5</td>
</tr>
</tbody>
</table>

Processing conditions: PLACO 50mmΦ Blown film M/C (Die Gap 2.5mm)

Temperature 180 °C, Screw rpm 50, Film thickness 50 μm
Surface property

- Better clarity due to uniform surface

<table>
<thead>
<tr>
<th></th>
<th>E180A</th>
<th>EVA-A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roughness (nm)</td>
<td>98</td>
<td>246</td>
</tr>
<tr>
<td>Haze (%)</td>
<td>10.2</td>
<td>17.5</td>
</tr>
</tbody>
</table>

3D Image

![3D Image](image_url)
■ Physical property

- Excellent impact strength, puncture strength, etc

Impact strength (g)

- E180A: 600
- EVA-A: 500

Puncture resistance (N)

- E180A: 80
- EVA-A: 70
Agricultural film

<table>
<thead>
<tr>
<th>Resin type</th>
<th>LDPE</th>
<th>LLDPE</th>
<th>HDPE</th>
<th>EVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade</td>
<td>310A</td>
<td>4220U</td>
<td>F120U</td>
<td>E032A</td>
</tr>
<tr>
<td>MI (g/10min)</td>
<td>0.8</td>
<td>1.0</td>
<td>0.044</td>
<td>0.5</td>
</tr>
<tr>
<td>Density (g/cm³)</td>
<td>0.922</td>
<td>0.921</td>
<td>0.956</td>
<td>0.923</td>
</tr>
<tr>
<td>VA (wt%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

Additives
- Anti-oxidant agent
 - LDPE: ●
 - LLDPE: ●
 - HDPE: ●
 - EVA: ●
- Anti-block agent
 - LDPE: ●
 - LLDPE: ●
 - HDPE: ●
 - EVA: ●
- Slip agent
 - LDPE: ●
 - LLDPE: ●
 - HDPE: ●
 - EVA: ●
- UV agent
 - LDPE: ●
 - LLDPE: ●
 - HDPE: ●
 - EVA: ●

Applications
- Greenhouse
 - LDPE: ●
 - LLDPE: ●
 - HDPE: ●
 - EVA: ●
- Mulching
 - LDPE: ●
 - LLDPE: ●
V. Fisheye
What is Fisheye / gel

■ Fisheye / gel
 - Film imperfections or defects developed during forming due to disturbances in the polymer flow
 - size: tens of micro meters to few millimeters
 - foreign materials, oxidized or crosslinked polymers
 - Insufficiently melted/dispersed polymer due to high molecular weight of polymer

■ Source of fisheye
 - Resin production stage
 - high molecular weight polymer
 - oxidation, degradation
 - inorganic additives, impurities
 - Transport, storage, processing, handling stage
 - contamination from environment
 - sluggish region, dead space in extruder (screw / die)
Inspection and analysis

■ Visual inspection
 o Count all kind/size of fisheye within defined area
 o Count only specified fisheye (large fisheye, black spot, scratch, etc.)

■ Automatic fisheye counter (AFC)
 o Advantage
 – cover large area
 – analysis fisheye trend, size distribution
 o Disadvantage
 – limitation on distinguishing fisheye type
 – resolution limited by measuring area
 o Type : online measure, offline measure

■ Identification of fisheye
 o Visual inspection
 o Microscope & hot stage melting test
 o Instrumental analysis : material & element analysis
Analysis with AFC

- Time trend, position & frequency, shape of fisheye

![Graph showing time trend and position distribution with AFC analysis.](image-url)
Identification of fisheye

Visual inspection

DSC & FT-IR

OM & Hot stage

SEM / EDS

Inorganic microtoming

Organic cross-sectioning

EDS

SEM
Classification of fisheye

- **Degradation, crosslinking, oxidation of polymer**
 - During polymerization and extrusion
 - Crosslinked gel, oxidized gel

- **Contamination**
 - Fiber: gloves, clothes, dust
 - Inorganic material: additives
 - Metal
 - Foreign resin
Microscope & Hot stage

- Fisheye analysis using microscope
 - shape, size
 - melting or unmelting
 - measuring Tm
Examples: Oxidized fish-eye

- Observed fish-eye seed after melting. Fish-eye is not melted in high temp.
- C=O peak is observed in FT-IR.
Examples: other resin contamination

- Shape of fisheye: round, oval shape
- Hot stage melting
 - matrix is melted at 75~85°C
 - seed of fisheye melted at 110~115°C => contamination of LDPE dust

30°C 80°C 110°C 115°C
Examples: Fiber

- Fiber can be classified by shape, and identified with FT-IR analysis
 - Cotton, polyester, nylon, etc.

![Cotton Image](image1)

![Polyester Image](image2)

FT-IR: Cotton, Cellulose
Examples: inorganic material

- Inorganic material can be identified with elemental analysis

=> identified as anti-blocking agent
Examples : metal

- Metal
 - no melting and same shape under hot stage
 - black shadow under transmission microscope, but bright color under reflection microscope (depends on material)
 - material can be identified with SEM/EDS elemental analysis
Formation of crosslinked fish-eye during process

- PE/EVA can be crosslinked under excessive heat and shear.
- Crosslinked molecule grows and become visible fish-eye during extrusion process
- Growth rate increases when the temperature is higher and the residence time is longer

Ref: Henk Lourens
Degradation of EVA

- **Thermal stability of olefin copolymer**
 - (stable) HDPE > LDPE > LLDPE > EVA (unstable)

- **Degradation by thermal radical**
 - Degradation rate increases,
 - at excessive high temperature
 - by oxygen contact
 - by impurities such as acid, oxides, metal ion
 - High VA EVA degrades faster

 ![Degradation of EVA, releasing acetic acid](attachment:image.png)

 EVA in Air, 180°C

 FT-IR: oxidation peak
Aging inside the die

- After finishing film extrusion, machine stopped and the EVA (VA 18%) had exposed to excessive high temperature 240 °C for 5 hours
 - showed severe die line
 - oxygen had diffused into die, make EVA severe degradation

☞ Proper shutdown procedure is required to maintain low gel condition

Inside the die; after 5 hours aging at 240°C
Processing temperature and antioxidant

- Crosslinking reaction becomes faster at higher temperature
 - Crosslinked/oxidized gel increases as processing temperature increases
- Adding antioxidants can help suppressing crosslinking reaction
 - Blocking radical generation cycle involving oxygen

![Graphs showing the effect of temperature on fisheye formation with and without antioxidants.](image_url)
Countermeasure

<table>
<thead>
<tr>
<th>Fisheye type</th>
<th>Possible cause and countermeasure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting type</td>
<td>- resin contamination</td>
</tr>
<tr>
<td></td>
<td>- incomplete melting in extruder, insufficient mixing</td>
</tr>
<tr>
<td></td>
<td>→ increase melting efficiency of extruder.</td>
</tr>
<tr>
<td></td>
<td>→ raise processing temperature, use fine mesh</td>
</tr>
<tr>
<td>Fiber</td>
<td>- contamination</td>
</tr>
<tr>
<td></td>
<td>→ do not use cotton gloves</td>
</tr>
<tr>
<td></td>
<td>→ clean air filter, transport line</td>
</tr>
<tr>
<td>Metal, inorganic, Black particle</td>
<td>- contamination</td>
</tr>
<tr>
<td></td>
<td>→ use fine mesh</td>
</tr>
<tr>
<td>Crosslinked Gel</td>
<td>- decomposition, oxidation, crosslinking reaction</td>
</tr>
<tr>
<td>Oxidized Gel</td>
<td>→ reduce exposure to oxygen during processing</td>
</tr>
<tr>
<td></td>
<td>→ reduce processing temperature and shear</td>
</tr>
<tr>
<td></td>
<td>→ increase stabilizer content</td>
</tr>
<tr>
<td></td>
<td>→ review start-up & shut down procedure, minimize exposure to high temperature</td>
</tr>
</tbody>
</table>
Disclaimer

©2016 Hanwha Total Petrochemical Co., Ltd. (“HanwhaTotal”)
All the information, including, but not limited to, tables, charts, and graphs provided in this document are intended solely for presentation/seminar/introduction purposes only. The opinion expressed or information provided herein are based on the presenter’s proficiency, experience and cumulative knowledge of the topic(s). Analysis may be performed on representative samples and not the actual product shipped. The information in this document relates only to the named product or materials when not in combination with any other product or materials. Hanwha Total makes every practical effort to ensure that the information provided herein is accurate and up-to-date, but makes no (and expressly disclaims all) representations or warranties of any kind, express or implied, with respect to the information, content, or materials included herein including but not limited to the merchantability, fitness for a particular purpose, suitability, accuracy, reliability, or completeness of this information or the products, materials described. Hanwha Total is entitled to alter, change or modify any of the content herein at any time without notice, but not under any duty to do so.
Without prior written approval of Hanwha Total, you shall not forward, distribute, and/or photocopy any part of this copyrighted document.
The use of information should be based on your own due diligence and you agree that Hanwha Total is not liable for any loss, damage or injury directly or indirectly suffered or incurred as a result of or related to anyone using or relying on any of the information contained in this document.